
Progress in Profiling and Parallelizing
the ACES II Program System

Anthony D. Yau, Piotr Rozyczko,
S. Ajith Perera, Rodney J. Bartlett,

Quantum Theory Project
University of Florida

Gainesville, FL 32611

K. Szalewicz
Department of Physics and Astronomy

121 Sharp Laboratory
University of Delaware

Newark, DE 19716

N. Nystrom
Pittsburgh Supercomputing Center

Mellon Institute Building
4400 Fifth Avenue

Pittsburgh, PA 15213

J. P. Blaudeau
ASC/HP, 2435 5th Street, Bldg. 676

Wright-Patterson Air Force Base, OH 45433-7802

M. Zottola
1201 Technology Drive

Suite 206
Aberdeen, MD 21001

Abstract

The program that calculates the coupled-cluster electron correlation energy in the
ACES II Program System was profiled and analyzed. With this information, we
began parallelizing the most expensive subroutines with message passing and
multithreading via MPI and OpenMP, respectively. We discuss the nature of the
most important bottlenecks and our parallelization strategy for each. Initial
timings for these parallel subroutines are also presented.

Introduction

Under 25 years of support from the DoD basic research agencies, AFOSR, ONR, and ARO; Rod
Bartlett's research group at the University of Florida Quantum Theory Project formulated and
implemented into general-purpose programs coupled-cluster (CC) methods for highly accurate

 1

electronic structure calculations. The ACES II program was written in the early 90's [1,2,3]. The
goal was to create a tool for the routine application of CC methods for open- and closed-shell
molecules; for ground, excited, and ionized states; for molecular structure and spectra (IR,
Raman, UV-vis, NMR, ESR, PES); for transition state and activation barrier determinations; and
for molecular properties; while using real abelian symmetry [4,5]. ACES II is still at the
forefront in terms of functionality and efficiency.

The standard CC algorithm solves a set of coupled amplitude equations. In general, a scheme
based on molecular orbitals (MO) is faster than one based on atomic orbitals (AO) since the MO
target matrix (T amplitudes) is at least 75% smaller than the AO target matrix. The disadvantage
of using an MO-based scheme is the volume of transformed integrals needed for evaluating the T
amplitudes.

One way to decrease the sizes of the storage files is to transform only the smallest MO integrals
while leaving the larger quantities for on-the-fly transformation with stored or direct AO
integrals. This is often referred to as "using the AO basis" while it is implied that the T
amplitudes are defined in the MO basis. The disadvantage of AO basis schemes is the time spent
evaluating all the contributions a single integral makes to the amplitudes. For large systems of
chemical interest, we need to use the AO basis for the virtual-virtual-virtual-virtual MO
integrals.

Due to recent demands for calculations on larger molecules (20-30 atoms) and to the need for
faster throughput in calculations, we have begun parallelizing the CC algorithm in the ACES II
program. The initial phase of this effort, contracted by PET under the CCM CTA, attempts to
micro-parallelize the existing CC single-point energy program wherever possible rather than to
build a new software package from scratch. Before programming could begin, a thorough
profiling of the existing CC implementation was required in order to identify the bottlenecks and
set directions for parallelization.

The software described here was developed on a cluster of IBM RS/6000 workstations each with
four 375 MHz POWER3 CPUs, 3 GB of main memory, and 18 GB of local disk space. The
nodal configurations are similar to the IBM SP clusters installed at the NAVO, ARL, and ASC
MSRCs with two exceptions. Our development cluster is connected with fast ethernet and the
MSRCs use high-performance switches. Although porting the code will only decrease
communication costs, a much more problematic difference is the lack of large local storage. The
current parallelization strategy intentionally avoids distributed or remote storage strategies, and
forcing the current prototype to access remote files will severely degrade performance.

Profiling

Initial attempts at timing the code revolved around the common profiling utility gprof. Most
commercially available compilers provide a mechanism for creating profiler data files after
running a binary executable. The data files may then be analyzed by utilities, which generate
statistics on CPU usage by each subroutine during the program's execution. We discovered these
analyses to be largely inadequate since the gprof call graph assignments are based on averaged
times from a histogram. For example, subroutine A may call DGEMM, a double precision

 2

matrix-matrix multiply [6], 99 times for a total cost of 1 second while subroutine B calls
DGEMM once for a cost of 9 seconds. We are more interested in parallelizing the 9-second
DGEMM than the 99 0.01-second DGEMMs. The gprof dependency graphs cannot tell the
difference. The averaged results would indicate that 99% of the CPU time is spent in the
DGEMMs called by subroutine A.

A profiler can justify this behavior with the fact that the program has no control over other user
or system processes, which may be competing for shared system resources. If a compute-
intensive process runs simultaneously with the program being profiled, then a wallclock profiler
will unfairly weight whatever routines are called during this interval. This led us to create our
own wallclock or realtime profiler, and we have been careful to time jobs run only with
dedicated system resources.

For the systems of current interest – C1 symmetry with many basis functions using the AO basis
scheme – 20% to 30% of the total CCSD wallclock time is spent generating intermediate
quantities used to determine the T amplitudes. Another 40% to 60% is spent generating the
amplitudes. Further analysis of these bulk operations shows that less than 10 routines consume
close to 90% of the total CCSD wallclock time.

Table 1 lists the main subroutines in the ACES coupled-cluster member executable, called vcc,
and the average percentage of wallclock time each one consumes over five molecular systems.
From the table, the routines that individually account for more than 2% of the wallclock time are
RDAO, CNTRCT, T1W1AB, RNGPRD, T1RING, and DODIIS. Other routines that we may
consider for micro-parallelization are QUAD1, T1INT2B, and LADAB.

GEMM-bound
CNTRCT, T1W1AB, and RNGPRD each wrap a single yet very large DGEMM. It is common
for each call to take tens or hundreds of seconds. T1RING is a wrapper for three routines, each of
which calls DGEMM tens or hundreds of thousands of times, but each call lasts only a few
milliseconds.

I/O-bound
The traditional answer for why vcc might be expected to suffer from I/O involves the processing
of massive data files needed by each CC iteration. However, comparing total wallclock time to
total user time for a dedicated node shows that the performance of vcc is more affected by faster
CPUs and memory accesses than faster I/O subsystems.

Processor-bound
Processor-bound algorithms are ones in which the speeds and sizes of the memory and memory
caches are the primary bottleneck [7]. Accessing arrays repeatedly in non-unit stride is a prime
example of a processor-bound operation. With a reimplementation of an algorithm, it is possible
to remove the architecture dependence and instead make the operation compute-bound.
Compute-bound algorithms are the best ones to have (in the current technology market) since
CPU speeds increase at a much more accelerated rate than the speeds of memory and I/O buses.

 3

RDAOIJKL is responsible for loading and contracting all the AO integrals with the T2
amplitudes from the previous CC iteration. The product array is named Z2, and this routine alone
consumes 40% to 60% of the CCSD wallclock time. RDAOIJKL is processor-bound. It is true
that this routine reads in all the AO integral files, but these read operations are sequential and
unformatted. The aspect of the algorithm that slows it down so much is that it almost randomly
updates columns in a very large matrix. Less than 1% of the wallclock time is spent reading in
the integrals. 1% to 3% of the time is spent looking up the read and write indices of the T2 and Z2
columns for each integral contraction. The remaining time is spent performing the Z2[]+=X*T2[]
contractions.

Parallelization

GEMM-bound
There are hundreds of distinct DGEMM calls in the vcc code. However, less than 10 are
responsible for more than 90% of the wallclock time attributed to matrix multiplies. Attempts at
linking to a fully parallel or multi-threaded BLAS library [8] have been disappointing. So much
time is added by the previously insignificant DGEMMs that the few that might benefit from MP
or MT are not able to compensate properly for the extra overhead.

The easiest way to decompose a matrix-matrix multiply is by dividing the columns (rows of the
transpose) of the second/right matrix over the number of threads, nodes, or both. This will
introduce cache coherence problems for MT DGEMMs, but the effect is much less than dividing
the rows of the first/left matrix over the number of threads. The performance of a DGEMM call
divided over two threads with column blocking is shown in Table 2. In any case, there are
countless studies of parallelizing matrix-matrix multiplies. We do not intend to reinvent this
wheel, so we will use an off-the-shelf parallel DGEMM if column blocking proves to be too
inefficient.

I/O-bound
For our initial test systems on dedicated nodes, the percentage of CPU time to wallclock time
never dropped below 70% for CCSD. Analyzing the CPU usage during a vcc execution shows
that there are times when the processor usage drops below 2% for sustained periods. The routine
that is responsible for this has yet to be found; however, every node currently requires a full file
set. Without an interprocedural analysis (IPA) [9] or a serial reimplementation, both of which
will be performed before the project ends, this behavior will not change.

Processor-bound
Since beginning this project, RDAOIJKL has been reimplemented twice. The first optimization
removed a very costly loop of conditionals over the contraction matrix. The second optimization
treats integrals with four common symmetries (denoted IIII) separately from those with differing
symmetries (such as IJIJ, IIJJ, and IJKL).

 4

Distributing each integral batch over the number of nodes allows the RDAO routines to achieve
near-linear scaling assuming the processor subsystems are the same in all nodes. The theoretical
limit is the number of integrals (600 by default) in a batch. We have experimented with further
dividing the write-domain (columns in the Z2 matrix) over available threads. The wallclock time
decreases with the thread count, but the scaling is not linear since there is no guarantee of perfect
(or even decent) load balancing while processing an integral batch. To further reduce the effect
of cache conflicts, we intend to implement a leading dimension to the Z2 matrix that is a multiple
of the size of a cache line. The performance of RDAOIIII divided over 2 MPI processes and 2
OpenMP threads is shown in Table 2.

The disadvantage to this distribution over nodes is the need to allreduce (global reduction
followed by global broadcast) the large Z2 matrix after processing the integrals. This
communication is quite costly; however, the bottleneck is the network bandwidth and not the
communication latency.

Future Work

The two main limiters from achieving 100% parallel efficiency or linear scaling are serial
bottlenecks and interprocess communication (including synchronization). With a parallel CC
algorithm, there will always be some amount of redundant serialization (e.g., determining low-
cost one-particle intermediates) and some amount of synchronized communication (e.g.,
broadcasting the new amplitudes between the nodes before the next CC iteration). However,
there are multiple ways to parallelize most algorithms and we must rely on real-world profiling
results to guide our efforts.

Decrease Communication

From an interprocedural analysis of various routines, it may be possible to communicate reduced
quantities at a lower cost than to communicate shared quantities the moment they become
available (a consequence of micro-parallelization). An example of such an analysis shows that
the temporary T2 contributions in the partially back-transformed state are fully transformed
before being added into the new T2 amplitudes. The full MO representation of an (AB,IJ) type
operator will always contain fewer elements than a full AO representation. Instead of calling
MPI_Allreduce on the full Z2 matrix after the rdao routines, the code could wait until the
retransformation and allreduce fewer T2 contributions at a lower cost based on the
communications bandwidth.

Tune Serial Routines

One of the disadvantages of using research-oriented software is the initial use of naive
implementations with the intent to optimize later. If the programmer is drafted into other
projects, that optimization may never take place.

We have discovered quite a few routines that could benefit from serial reimplementation.
DODIIS is one routine that consistently consumes 1% to 3% of the total wallclock time. The

 5

bottleneck in that routine involves forming a matrix of dot products whose factors track the
convergence of the T amplitudes over multiple iterations. The current algorithm is limited by
available memory and I/O bandwidth. An alternate serial algorithm could be implemented with
new code, which will be definitely faster, or a parallel algorithm could be implemented with a
new dependence on communication latency.

Distribute Computation from IPA

The determination of T amplitudes at one iteration only depends on the amplitudes from the
previous iteration and constant one- and two-particle operators and integrals. With a massive
IPA, it is technically possible to distribute the amplitude determination over the compute nodes
such that only the intermediate quantities needed for each subset of amplitudes are computed
locally. In principle, this approach should limit the communication to a single allgather at the end
of each CC iteration; however, the nature of the electron correlation problem suggests otherwise
if we choose not to recompute common intermediates among the nodes. Such an algorithm will
have to be studied and tested for performance.

 6

References

1 ACES II is a program product of the Quantum Theory Project, University of Florida.
Authors: J.F. Stanton, J. Gauss, J.D. Watts, M. Nooijen, N. Oliphant, S.A. Perera, P.G.
Szalay, W.J. Lauderdale, S.A. Kucharski, S.R. Gwaltney, S. Beck, A. Balkov, D.E.
Bernholdt, K.K. Baeck, P. Rozyczko, H. Sekino, C. Hober, and R.J. Bartlett. Integral
packages included are VMOL (J. Almlof and P.R. Taylor); VPROPS (P. Taylor); ABACUS
(T. Helgaker, H.J. Aa. Jensen, P. Jorgensen, J. Olsen, and P.R. Taylor).

2 J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett, "The ACES II
Program System," IJQC: Quant. Chem. Symp. 26, 879-894 (1992).

3 R. J. Bartlett and J. D. Watts, “ACES II,” in Encyclopedia of Computational Chemistry (John
Wiley & Sons, 1999).

4 R. J. Bartlett, "Coupled-Cluster Approach to Molecular Structure and Spectra: A Step
Toward Predictive Quantum Chemistry," J. Phys. Chem. 93, 1697-1708 (1989).

5 R. J. Bartlett, in Modern Electronic Structure Theory, Part II, edited by D. R. Yarkony
(World Scientific, Singapore, 1995), p. 1047.

6 J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, "A set of Level 3 Basic Linear
Algebra Subprograms," ACM Trans. Math. Soft. 16, 1-17 (1990)

7 G. F. Pfister, In Search of Clusters, 2nd ed. (Prentice Hall PTR, Upper Saddle River, NJ,
1998), p. 154.

8 C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, "Basic Linear Algebra
Subprograms for FORTRAN usage," ACM Trans. Math. Soft. 5, 308-323 (1979).

9 F. E. Allen, in Proceedings IFIP Congress, 1974 (North-Holland, 1974), pp. 398-402.

 7

Table 1. Average wallclock percentages for vcc subroutines from 5 RHF, C1, AO basis systems.

ROUTINE
NAME

PERCENT
OF TOTAL
WC TIME

 ROUTINE
NAME

PERCENT
OF TOTAL
WC TIME

ZERSYM 0.2% FEACONT 0.5%

T1RING 3.7% FMICONT 0.2%

CNTRCT 10.1% FMECONT 0.4%

SUMSYM 0.1% T1INT2A 0.3%

F2TAU 0.0% T1INT2B 1.6%

GETLST 0.8% T1INT1 0.4%

QUAD1 1.1% LADAA 0.0%

QUAD2 0.4% LADAB 1.2%

QUAD3 0.3% T2TOAO 0.6%

MAKFME 0.2% RDAO 52.9%

T1W1AA 0.0% Z2TOMO 0.9%

T1W1AB 5.4% ZIAAO 0.1%

T1INW2 0.0% T12INT2 0.7%

RNGPRD 11.1%

SUMRNG 0.3%

ERNGAA 0.0%

ERNGAB 0.2%

SUMSYM 0.2%

E4S 0.2%

NEWT2 0.4%

PHASE3 0.5%

DODIIS 3.3%

Table 2. Preliminary results comparing average wallclock times in parallel (2 nodes with 2 CPUs
each) with average wallclock times in serial.

ROUTINE
NAME

1/1 TIME
(s)

2/2 TIME
(s)

ACTUAL
SPEED-UP

RDAOIIII 955.8 277.5 3.4

MT_DGEMM 567.9 294.7 1.9

 8

	Progress in Profiling and Parallelizing�the ACES II Program System
	Abstract
	Introduction
	Profiling
	
	GEMM-bound
	I/O-bound
	Processor-bound

	Parallelization
	
	GEMM-bound
	I/O-bound
	Processor-bound

	Future Work
	Decrease Communication
	Tune Serial Routines
	Distribute Computation from IPA

	References

